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1 INTRODUCTION

Information hiding has emerged as an exciting and important research �eld. In-
formation hiding not only complements the traditional obfuscation techniques,
(e.g., [17]) but also brings to it new prospects. By its de�nition, information hid-
ing hides a message (the embedded message) under a cover message to yield the
stego-message. Much of the research in information hiding has focused upon
steganography and watermarking. Steganography refers to methods that are
used to transmit the embedded message without an observer being aware that
there is an embedded message in the cover message. The embedded message may
be fragile - it is easily broken in the face of attacks. With respect to steganog-
raphy, robustness is not a critical property. Transparency is! The similar �eld
of watermarking is to embed a \watermark" for the purpose of authentication,
a crucial step for copyright protection and tamper proo�ng. The embedded
watermark may not be transparent in the sense that it is perceivable, but it
must not be easily removed from the stego message. The embedded watermark
is usually required to be semi-fragile (i.e., destroyed if changes exceed a limit)
or robust. Johnson et. al. [8] nicely state (their concern is images) that \Tradi-
tional steganography conceals information; watermarks extend information and
may be considered attributes of the cover image."

In our present experiments, digital images are used as the cover message
in which we embed the hidden information. Two common modes of embed-
ding are spatial embedding and transform embedding. Spatial embedding

inserts messages into image pixels, usually in the least signi�cant bits1 (LSB)2

[10]. LSB embedding has the merit of simplicity, but su�ers from the lack of
robustness. LSB embedding is susceptible to image-processing type of attacks.
Error-correction coding has been proposed for enhancing the robustness [9][13],
but its e�ectiveness is limited to low levels of noise. If spatial embedding in-
volves higher order bits, one runs the very real risk of the steganography being

�Research supported by the O�ce of Naval Research.
1Early experiments of embedding messages under the least signi�cant bits in audio

steganography were performed by Kang [9].
2Abbreviations may be singular or plural.
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detected, and for watermarking the concern is that the cover image might be
degraded and/or the watermark may be easy to remove. In order to achieve
robust hiding, researchers have invoked transform domain techniques (e.g., fre-
quency space) [5]. Transform embedding embeds a message by modifying
(selected) transform (e.g., frequency) coe�cients of the cover message. Ideally,
transform embedding has the e�ect in the spatial domain of apportioning the
hidden information through di�erent order bits in a manner that is robust, but
yet hard to detect. Of course one must then be concerned with the detectability
in the frequency domain, but at least the human visual system (HVS) may be
fooled. Therefore, hiding in the frequency domain presents its own challenges
(e.g., [5][7]). Since an attack, such as image processing, usually a�ects a certain
band of transform coe�cients, the remaining coe�cients would remain largely
intact. Hence, transform embedding is in general more robust than spatial em-
bedding.

Extraction of the embedded message is often carried out by comparing the
stego-message with the cover message. This is practical for watermarking, but
one may not have the original cover message when dealing with a stego-message.
Without a cover image, embedding may involve a stego-key. The stego-key
would serve a similar purpose as the cover image in that it (hopefully) enables
us to determine the hidden message. Also note that for message authentica-
tion, it may be su�cient only to prove the existence of the embedded message
perhaps via a similarity measure (e.g., [5]). Also, In the absence of the original
image, statistical methods based on detection probability have been proposed
for extraction (e.g., [20]).

2 REVIEW

In this section, we will briey review the three most commonly used transform
techniques: DFT, DCT and Wavelet.

2.1 Discrete Fourier Transform: DFT

The DFT has its root in the Fourier series analysis. Recall that a time domain
periodic function f(t) can be decomposed into a series of sine (or cosine) wave
functions, where each has frequency that is a multiple of a constant (i.e., the 1st
harmonic !0).

3 The goal is �nding the coe�cient for each wave function. For
the purpose of frequency domain analysis, the exponential Fourier series is used
in places for sine or cosine series and its coe�cient of the nth harmonic (i.e.,

n!0) is given by Fn = (1=P )
R P
0
f(t) exp��n!0t dt, where � denotes the complex

number
p�1, P denotes the duration of a period and !0 is 2�=P .

Consider the one-dimension discrete case in which N samples f(0); f(T );� � � ;
f(NT ) are taken at the sampling rate T . The sampled sequence may not have
a period, but in the DFT it is assumed that these N samples constitute a

3The constant !0 is needed to assure the orthogonality between two wave functions.
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period. As a result, the period of the sampled sequence becomes NT and
correspondingly, the constant frequency !0 is 2�=NT . The discrete Fourier
transform is obtained by substituting respectively !0 with 2�=NT , t with kT ,
dt with T , P with NT and n with u in the exponential Fourier series, i.e.,

F (u) =
1

N

N�1X
k=0

f(kT ) exp��2�(
uk
N
) 0 � u < N

where u is the index in the frequency domain. Here, the total number of fre-
quency components is also N . The lowest frequency component of the DFT
occurs at u = 0 and is 0. The highest frequency component can be determined
from the Nyquist sampling theorem and its value is 1

2T Hz (or cycles/second).

The index u which corresponds to the highest frequency component is N
2 , right

at the middle of the N frequency indices.4 For the digital pictorial domain,
the sampling interval T is measured in terms of, not time, but pixels between
consecutive samplings. In the case of one pixel per sampling, i.e., T = 1, the
highest frequency component becomes 1

2 cycles/pixel.5 The highest frequency
(or, the bandwidth) has been used in computing the lower bound of the hiding
capacity of a stego image, where the lower bound is computed from the Shan-
non's capacity measure of an additive white Gaussian noise (AWGN) channel6

with the embedded message being viewed as the signal and the cover message
as the noise. (e.g., [18][13]).

Let I(i; j) denote the brightness value of the pixel at position (i; j) of an
image. The 2D DFT is a natural extension of the 1D DFT by applying the 1D
DFT to a 2D matrix twice, and its period is given by the dimension of the input
image (i.e., N �M), i.e.,

F (u; v) =
1

NM

N�1X
k=0

M�1X
l=0

I(k; l) exp��2�(
uk
N
+ vl
M
) ; 0 � u < N ; 0 � v < M : (1)

Its backward transform7 is given by

4Recall that the e�ect of sampling at time interval T in time domain yields a series of repli-
cas of the frequency spectral separated at (2�)=T apiece in the frequency domain. The Nyquist
sampling theorem says the maximum sampling interval T is reciprocally lower-bounded by the
frequency bandwidth W , i.e., (2�)=T � 2W . Let umax denote the highest frequency index.
We have (2�)=T = 2(umax!0) or 2(umax)(2�=NT ). Thus, umax is equal to N

2
. The highest

frequency (i.e., umax!0) is
�

T
radians/second or 1

2T
cycles/second.

5For a digital image, the highest frequency of one direction may di�er from that of the
other direction. Here, the two highest frequency components are assumed to be the same.

6

C = Wlog2(1 +
S

N
);

where W is the bandwidth, S denotes the energy measure of the signal, and N denotes the
energy measure of the noise.

7More precisely, the backward transform should be the inverse mapping F�1. We use
I(k; l) instead of F�1(k; l) for convenience.
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I(k; l) =

N�1X
u=0

M�1X
v=0

F (u; v) exp�2�(
uk
N
+ vl
M
) ; 0 � k < N ; 0 � l < M (2)

EQ(1) can also be written in the matrix form,

0
@ V1

� � �
VN

1
A (I)MN

�
UT
1 � � � UT

M

�
(3)

where Vi and UT
j denote fexp��2�(vi0M ); exp��2�(

vi1

M
); � � � ; exp��2�( vi(M�1)

M
)g and

fexp��2�(
uj0

N
); exp��2�(

uj1

N
); � � � ; exp��2�(

uj (N�1)

N
)g, respectively. Note that the

DFT obeys the property of symmetry i.e, F (u; v) = F �(N � u;N � v)8, which

can be seen by replacing u and v with N �u and N � v in exp��2�(
uk
N
+ vl
M
). The

property of symmetry is useful for plotting the result of the DFT as shown in
the next section. The 2D DFT is a common instrument for analyzing hiding
capacity and is presently available in our xv tool.

2.2 Discrete Cosine Transform: DCT

The DCT had been the major mathematical framework for image compression
in JPEG until JPEG2000 was introduced. The DCT improves the DFT by elim-
inating the high frequency components induced by the sharp discontinuities at
the boundary between two consecutive periods in the time (or spatial) domain
of a periodic signal. To represent the sharp value change, it needs non-zero
high frequency DFT coe�cients. If for compression reasons all high frequency
components of DFT, including those generated from the sharp discontinuities,
are deleted, such deletion will cause distortion to the original image. To elim-
inate those undesirable high frequency components, the DCT concatenates a
period with the mirrored image of its an adjacent period. This new period has
twice the sample points, but no sharp value change at the boundary with its
neighbors. Concatenation of one period and the mirror image of adjacent pe-
riod de�nes an even function and hence, results in yielding an all real-valued
transform code.9 This is a big advantage in computation! The DCT can be
obtained from the DFT of a mirrored 2N sample sequence, where the DCT is
the �rst N sample points. The commonly used form of the DCT was derived
from a class of discrete Chebyshev polynomials [1]. The derivation of the 2D

8F �(:; :) is the complex conjugate of F (:; :)
9Suppose a function, g(t), whose domain is interval [0,P), is concatenated with its shifted

mirror image, g(2P � t). The Fourier transform of this concatenated function is given by

(1=2P )
R 2P

0
(g(t)+g(2P � t)) exp��n!0t dt; where exp(�)�n!0t = cos(n!0t)+(�)sin(n!0t). It

can be rewritten as (1=2P )

�R
P

0
g(t) exp��n!0t dt +

R 2P

P
g(2P � t) exp��n!0t dt

�
: By replac-

ing 2P�t with t in the second term, the Fourier transform becomes (1=P )
R
P

0
g(t)cos(n!0t)dt:
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DCT code is similar to that of the DFT. The DCT code of an image brightness
matrix I(i; j) (0 � i < N , 0 � j < M) is given by

S(u; v) = c(u; v)
N�1X
i=0

M�1X
j=0

I(i; j)cos
�(2i+ 1)u

2N
cos

�(2j + 1)v

2M
; (4)

where 0 � u < N and 0 � v < M , and c(u,v) is given by c(0,0)=
p
1=N

p
1=M ,

c(u,0)=
p
2=N

p
1=M , c(0,v)=

p
1=N

p
2=M , and c(u,v)=

p
2=N

p
2=M , u; v >

0. For each u and v, di�erent values of cos�(2i+1)u2N cos�(2j+1)v2M , 0 � i < N
and 0 � j < M , form a NxM DCT basis matrix. The DCT basis matrices are
orthonormal. Coe�cients produced from these base matrices are uncorrelated
and hence can be processed independently. The backward DCT is shown below.

I(i; j) =

N�1X
u=0

M�1X
v=0

c(u; v)S(u; v)cos
�(2i+ 1)u

2N
cos

�(2j + 1)v

2M
: (5)

In JPEG, the DCT is applied to each block of 8X8 pixels from the input image,
with the image being partitioned into a number of blocks [15].

2.3 Discrete Wavelet Transform: DWT

The wavelet transform (WT) has been adopted as the standard tool in JPEG
2000 still image compression as it produces a higher compression ratio than
the DCT does [4]. Studies of image compression also show that the wavelet
transform provides better frequency and time (spatial) resolution than other
transform techniques do.

The DFT gives an excellent description of the frequency responses of a signal,
but no information about when (where) particular frequency components occur
in time (space). The Short-time Fourier Transform (STFT) improves the DFT
by breaking the signal into intervals of �xed length and applying the Fourier
analysis to each interval. A particular frequency response that occurs only at a
certain interval can be captured with STFT. However, �xed length intervals have
their restrictions. Although a short �xed length interval is good for identifying
local variation in time (space), it is inadequate to describe frequency responses
whose cycles exceed the length of the interval. The major changes from STFT
to WT are perhaps the selection of base functions (e.g., the sinusoidal functions
in Fourier transform) and the windowing operation. A base function of wavelet
transform can be any function with zero mean and �nite energy (called the
wavelet).10 The entire set of base functions are mutually orthonormal (like
sinusoidal bases) and generated from a single base function (called the mother
wavelet) by scaling and translation. In WT, a base function is locally applied

10That is,
R
	(t)2dt � inf and hence, a base function is in vector space L2. Because of

the �nite energy requirement, 	(t) is restricted to a narrow band, which gives the wavelet its
frequency localization capability [16]. A sine (cosine) function cannot be a base.
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to a particular area of the signal at a time. Localization is realized through
windowing, where the size of the window, indicating resolution, unlike the �xed
interval used in STFT, is not a constant. Only the base function whose scale
(or cycle) is compatible with the size of the window used. As a result, base
functions of slower cycles are used under a larger window, while base functions
of faster cycles are used under a shorter window.

In the case of data compression, the implementation of the DWT is similar
to that of subband coding[16], where at each stage a coarse overall shape and
details of the data obtained from the previous stage are derived. Encoding
in the DWT proceeds with decomposition and downsampling. Decomposition
separates data into frequency bands via high-pass and low-pass �ltering. The
functions of a high-pass �lter are the WT base functions, while the functions
of the low-pass �lter are the complements of the base functions. Downsampling
removes data which is not needed for future reconstruction. Decoding on the
other hand involves up-sampling to adjust dimensionality and recombining data
from di�erent bands.

Call the output from high-pass and low-pass �ltering the �ltered transform
coe�cients. Let h, l and 
 denote the high-pass, low-pass and the convolu-
tion operation, respectively. Consider the case where the low-pass �lter is a
2-tap averaging operator (i.e, l(0)=1/2, l(1)=1/2) and the high-pass �lter is
a di�erence operator (i.e., h(0)=1/2, h(1)=-1/2 - the Haar transform). Let
X = fx1; � � � ; x8gT . The outcomes of �ltering are the high-�ltered coe�cients
h
X and the low-�ltered coe�cients l 
X , i.e.,

l
X =
1

2
[x7 + x0; x0 + x1; � � � ; x5 + x6; x6 + x7]

T
(6)

h
X =
1

2
[x0 � x7; x1 � x0; � � � ; x6 � x5; x7 � x6]

T
(7)

The original signal can be reconstructed from those high-�ltered and low-
�ltered coe�cients by, for instance, adding them one by one and dividing the
result of addition by 2. In fact, it can be shown that reconstruction needs just
half the number of coe�cients from each set and hence, each of the two sets is
down-sampled to a half. If downsampling D is picking up every other coe�cient
from l 
X and h
X , it has the form

2
664

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

3
775 (8)

The relationship between original data and the transform code is described in
the matrix form as follows,

Wa [X ] =

�
DXl

DXh

�
[X ] (9)
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where Wa is the DWT.
The wavelet transform may be applied to each set of �ltered transform co-

e�cients to obtain more detailed and coarser description. For instance, after
downsampling, we have
Stage 1:

coarse :
1

2
[x7 + x0; x1 + x2; x3 + x4; x5 + x6]

T
(10)

detail :
1

2
[x0 � x7; x1 � x2; x3 � x4; x5 � x6]

T
(11)

We may continue the process recursively to get further decomposition.
Stage 2:

coarse :
1

4
[x7 + x0 + x1 + x2; x3 + x4 + x5 + x6]

T (12)

detail :
1

4
[x7 + x0 � x1 � x2; x3 + x4 � x5 � x6]

T (13)

Stage 3:

coarse :
1

8
[x7 + x0 + x1 + x2 + x3 + x4 + x5 + x6]

T (14)

detail :
1

8
[x7 + x0 + x1 + x2 � x3 � x4 � x5 � x6]

T (15)

The coe�cient matrix is

[
1

8
(x7+x0+x1+x2+x3+x4+x5+x6);

1

8
(x7+x0+x1+x2�x3�x4�x5�x6);

1

4
(x7 + x0 � x1 � x2);

1

4
(x3 + x4 � x5 � x6);

1

2
(x0 � x7);

1

2
(x1 � x2);

1

2
(x3 � x4);

1

2
(x5 � x6)]

T

Note that the �rst element of the coe�cient matrix is the average of all values.
For the 2D DWT (i.e., WaXW T

a ), the transform codes of an image are divided
into four pieces, often labeled as fLL, HL, LH, HHg. LL corresponds to the
coe�cients resulting from twice low-pass �ltering and carries the most important
information from the original image. Its size is just one quarter of the image.
The remaining three pieces are the detailed components. Similar to the example
shown above, for better compression result, the high and low �lters are applied
to the four (usually, just the LL) pieces.
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3 DISCUSSION

In this section, we show our experimental results with transform embedding,
and discuss two cases related to robustness and detection of embedded messages.
Embedding is based on the following steps: (1) Apply the transform algorithm to
the cover and the embedded data, (2) select the embedding method to combine
the two sets of coe�cients, and (3) apply the inverse transform to the combined
coe�cients to produce the stego image. In watermarking, extraction of the
embedded message usually involves the subtraction of the coe�cients of the
cover from the coe�cients of the stego, whereas in steganography, extraction
may involve the use of the pre-assigned stego key.

3.1 Experimental Results

To illustrate transform domain hiding, we embed an image (Waterdrop) under
a cover image (Washington Monument), where the two images are of the same
size. Let Fe and Fc denote the transform code of the embedded and the cover
images, respectively. (Note that, the embedded messages may not be trans-
formed.) The embedding formula is in general described as

Fs(u; v) = Fc(u; v) + J(u; v) � Fe(u; v); 0 � u �M; 0 � v � N

where J(u; v) denotes the perceptual factor calculated for each frequency com-
ponent [19]. In its simplistic form the J(u; v) can be either additive (e.g., J(u; v)
= �), where � is an attenuation factor for adjusting the magnitude of embedded
coe�cients and Fs = � �Fe+Fc, or multiplicative (e.g., � �Fc(u; v)), where the
coe�cient of the cover, Fc(u; v), is involved, and Fs = Fc � (1 + � � Fe). The
advantage of embedding in the additive form is its e�cient invertibility [5] for
extraction. Not all coe�cients of the cover are used for embedding. Transform
coe�cients of low frequency components that contain the most important over-
all information of the original image usually are excluded from being used for
embedding. For instance, in [2], coe�cients from the middle frequency (DWT)
bands are randomly selected for embedding. In our current experiments, we set
J(u; v) to 1 and linearly combined the two sets of coe�cients, i.e.,

Fs = � � Fe + (1� �) � Fc;
in order to ensure that pixel values obtained from the inverse transformation will
be in the proper dynamic range. (The scaling factor is chosen to be � = 0:05.)
Since addition in the Fourier domain results in addition in the time (spatial)
domain, linear combination assures that image values extracted from Fs will not
fall outside the allowed range. (On the other hand, linear combination does not
make the most use of the transform domain, since embedding in one is basically
equivalent to embedding in another.)

The results of our experiments are shown in Figure 1 to Figure 6. Comparing
the original (Figure 1) and the stego (Figure 5), perceptually the two show no
di�erence. The companion �gures to the images are their corresponding DFT
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matrices. Note that the coe�cient at the left corner of a DFT matrix obtained
from (1) should be the lowest frequency component (i.e., u = 0; v = 0 or the
DC). However, because of the symmetric property of the DFT, it is custom-
ary to display the DC component at the center, and the further away from the
center a DFT component is, the higher is its corresponding frequency. In our
present display, the frequency component at (u; v) is moved to a new position by

((M=2� 1)� u; (N=2� 1)� v) if 0 � u < (M=2); 0 � v < (N=2)
((3M=2� 1)� u; (N=2� 1)� v) if (M=2) � u < M ; 0 � v < (N=2)
((M=2� 1)� u; (3N=2� 1)� v) if 0 � u < M ; (N=2) � v < N
((3M=2� 1)� u; (3N=2� 1)� v) if (M=2) � u < M ; (N=2) � v < N

To further enhance the DFT display, a logarithmic transform is applied to ad-
just the dynamic range of coe�cients and the result is normalized to be within
the level of 0 to 255 (in order for our xv tool to display). Since the magnitude
of the DC component is far larger than that of any other frequency component,
the DC component is actually removed from the DFT image (seen as a black
dot at the center).

Fig1: the cover F ig2: DFT of the cover

F ig3: the embedded F ig4: DFT of the embedded
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Fig5: the stego F ig6: DFT of the stego

At present, we have not yet implemented adaptive selection of transform co-
e�cients. We do not suggest embedding spatial data (i.e., pixels) of the em-
bedded image under the frequency coe�cients of the cover (i.e., Ie + Tc) due
to the fact that the frequency coe�cients usually have a much larger dynamic
range. Hence, changes to the frequency components (due to rounding and in-
verse transformation) can cause irremediable distortion to the embedded spatial
data.

Extraction is implemented by reversing the embedding steps, i.e., (F
0

s � (1�
�)Fc)=� = F

0

e , where
0 indicates the change of values due to image processing

attacks. The embedded image extracted from the stego (Figure 7) also appears
to be nearly identical to the original Waterdrop image. However, the signi�-
cant reduction in magnitude of frequency coe�cients during embedding taxes
the quality when image compression is in order. On the right-handed side of
Figure 7 is another extracted image (Figure 8) obtained from applying JPEG
to the stego image. The grossly smeared image shows the need of more robust
embedding.

Fig7: the extracted embedded image F ig8: JPEG (Quality 75%)11

For comparison, Figures 9 & 10 show the extracted images in case the least 2
signi�cant bits from the spatial domain are used for embedding [10].

11The quality value is expressed on the 0..100 scale recommended by Independent JPEG
Group. It is related to the DCT quantization.
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Fig9: L2SB embedding (Quality 100%) Fig10: L2SB (Quality 75%)

The outcome supports our observation that LSB embedding is susceptible to
image processing attacks.

The result of embedding with the DWT is similar to that of the DFT and
is shown in Figures 11&12. The DWT does not provide better robustness; ro-
bustness is not a property of transform algorithms.

Fig11: DWT coefficients F ig12: extract

3.2 Detection

For embedded data to be undetectable, it needs to be transparent in both the
spatial and the transform domains. Manjunath et al. [2] proposed the method
of embedding under the DWT coe�cients, where only the coe�cients in the
middle frequency range are used. That is, in Figure 11, embedding involves
all frequency bands except the area of the left upper corner (corresponding to
lower frequency bands) and the right lower corner (corresponding to the higher
frequency band). The cover and the stego images are shown in Figures 13&14
where both images were taken from a publicly available web site [12]. The two
show no visual signi�cant di�erence. At least, they both look legitimate. How-
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ever, visual transparency in the spatial domain does not imply UN-detectability.
In fact, we can e�ectively show that embedded information exists in Figure 14.
Our detection method is based on frequency domain analysis. We applied the
DFT to both the cover and the stego images of Figure 13&14 (only on the Red
color byte). Their DFT matrices are shown in Figure 15&16, where to highlight
the contrast, only the most signi�cant bit is used in the display. The image
with embedded data shows a striking bright diamond pattern that surrounds
the center, while the cover image (Figure 13) with no embedding has a com-
mon radial shape. Recall that in the DFT display frequency components that
correspond to the highest frequency are located in the corner areas, those corre-
sponding to the lowest frequency are in the center, and coe�cients on the band
of the diamond belong to the middle frequency range. The diamond pattern is
also seen in several stego images we have tested.12 As a result, this seemingly
transparent embedding method fails our simple detection test. The embedding
technique proposed in [2] is valuable if the stego image of Figure 14 is for wa-
termarking, but not steganography. Note, watermarking was the intention of [2].

Fig13: cover F ig14: stego

F ig15: DFT of cover F ig16: DFT of stego

12The diamond shape in some images are not so clear.
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So far the strongest result on detection was perhaps made by J. Fridrich
at the IHW2001, where she claimed that her method can potentially detect
messages as short as any single bit change in a JPEG image.13 Her method
examines whether or not a 8x8 block of JPEG pixels could have been produced
by any block of quantized DCT coe�cients (also in [6]). This result is interesting
because JPEG is frequently used. We are currently analyzing their approach
and studying its applicability to other transform methods.

3.3 Robustness

To improve robustness, it may be necessary to reduce the size of embedded data
and embed it multiple times under di�erent parts of selected coe�cients, where
each embedding responds to a particular attack in a di�erent way. Interesting
work in robustness was recently reported by [11] (called cocktail) and it is one
of few methods claimed to be very robust against variety of attacks. The basic
observation in [11] is that most attacks will cause magnitudes of more than 50%
of frequency coe�cients to either increase or decrease. Thus, it makes sense to
embed the data twice with one embedding handling the increase and the other
embedding handling the decrease. As a result, one embedding is expected to
survive with higher chances against any attack.

Can the cocktail embedding method be applied to improve our present NRL
L2SB[14] embedding? Unfortunately, it cannot. Recall that NRL L2SB embeds
a piece of datum under the least 2 signi�cant bits (so its dynamic range is from
0 to 3) of a pixel whose position is speci�ed by a pre-assigned stego key. The
stego key is basically a long-term key and independent of cover images. The
cocktail method was designed for watermarking, while NRL L2SB was used
to demonstrate the concept of steganography. NRL L2SB is used to extract
the embedded message, not just to verify its existence as many watermarking
methods do.

We have not yet found a sound method that ensures the robustness of NRL
L2SB. In the following, we show a simplistic schemes that may be useful to
protect the embedded data against a 2x2 low-pass averaging �ltering (e.g.,�
1=4 1=4
1=4 1=4

�
) and a 2x2 high-pass di�erence �ltering (e.g.,

�
1=4 �1=4
�1=4 1=4

�
)

attacks. Assume position (i,j) of the cover image I is chosen for embedding.
Consider the following two cases.

Case 1: average �ltering. In the case of averaging �ltering, we also embed

13The JPEG image generation involves the following steps. For a given input image (I),

� divide the I into a number of 8x8 blocks,

� compute the DCT of each block to yield the DCT coe�cient matrix,

� quantize the DCT coe�cients,

� evaluate the inverse DCT of the quantized coe�cient matrix, and

� round the values to obtain the �nal JPEG image.
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the same datum under the three neighbors (i-1,j-1), (i-1,j) and (i,j-1). The 2x2

averaging �ltering computes Is(i�1;j�1)+Is(i�1;j)+Is(i;j�1)+Is(i;j)
4 and stores the

result back to position (i,j), where Is(:; :) denotes the pixel value of the stego at
(.,.). As a result, the embedded value at position (i,j) is preserved under this
scheme. Note that any pixel value Is(k; l) in the [0,255] range can be represented
as the summation of a multiple of 4 and a remainder, i.e.,

Is(k; l) = 4m+ r ;

where m is a value in [0,63] and r is in [0,3]. If the position (k,l) is selected for
embedding, then r denotes the value of the embedded datum. Since each of the
four neighbor pixels has the same r, the result of averaging the four pixel values
will still have the form, 4m0+ r, with the same r and some number m0 2 [0; 63].

Case 2: di�erence �ltering. The di�erence �ltering, which calculates

Is(i� 1; j � 1) + Is(i; j)� Is(i� 1; j)� Is(i; j � 1)

4
;

is more involved. In order to preserve the embedded value, we store an embedded
value under not one, but two positions. Suppose the embedded value is a \2",
which occupies the last two signi�cant bits as 1 and 0 in order from the higher
bit to the lower bit. We embed the 1 and the 0 in separate positions.
For \1" embedding, we embed the value 1 under the pixel at (i,j), 0 at (i-1,j),
0 at (i,j-1) and 3 under (i-1,j-1).

For \0" embedding, we embed the value 0 at all four neighbor pixels which
have no overlapping with those used for \1" embedding.

This scheme will get the \1" (or \0") back at position (i,j). To extract, two
consecutive positions are decoded together.

The length of the stego key under this embedding scheme will increase signif-
icantly. The length for embedding against the average �ltering becomes 4 times
its original length and the length for the case of di�erence �ltering becomes 8
times. Total length is 12 times of the original one. We divide the cover image
into two parts at the ratio 1:2 with the smaller part for embedding against the
average �ltering attack and the larger one for the case of di�erence �ltering.
The elongated stego key will inevitably increase the detectability of embedded
messages. We are investigating more general robust embedding schemes for
steganography. Since in steganography the cover image is usually not available
for extraction, robust embedding is a more challenging issue to steganography
than to watermarking.

4 FUTURE WORK

Part of our future research will be on the issues of robustness and detectability
of information hiding. We showed that a watermarked image which is perceptu-
ally invisible in the spatial domain may fail our detectability test. Our approach

14



to detectability is based on the DFT domain analysis. We proposed a method
for protecting data embedded under LSBs against two speci�c forms of �ltering.
The two methods need to be re�ned and expanded for more general applications.
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